

High Performance Prompting for LLM Extraction of Findings from Radiology Reports

Mohammed M. Kanani, MS, Medical Student, University of Washington School of Medicine Arezu Monawer, MD; Lauryn Brown, MD; William King, MD, PhD; Zach Miller, MD; Nitin Venugopal, MD; Patrick Heagerty, PhD; Jeffrey Jarvik, MD, MPH; Trevor Cohen, PhD; Nathan Cross, MD, MS

Introduction

Extracting information from radiology reports can provide critical data to empower clinical, QA/QI, research, and educational radiology workflows. For spinal compression fractures, this data can identify at risk populations and facilitate evidence-based follow up and treatment. Manual extraction from free-text radiology reports is laborious, and prone to errors. Large language models (LLMs) have shown promise. Fine tuning strategies are time and resource intensive, but a variety of prompting strategies have achieved similar results with less resources, data and annotation. Our study pioneers the use of Meta's Llama 3.1 for automated extraction from free-text radiology reports to detect spinal compression fractures, outputting structured data without model training.

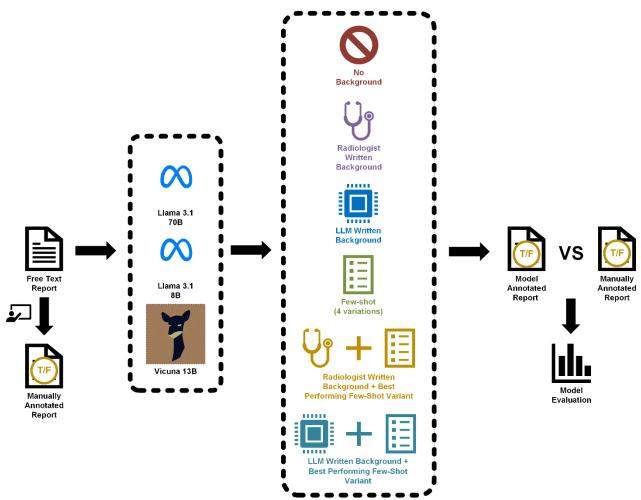
Hypothesis

An open-source LLM can extract imaging findings on specific pathologies from free-text radiology reports using prompt-based strategies, eliminating the need for specific model training.

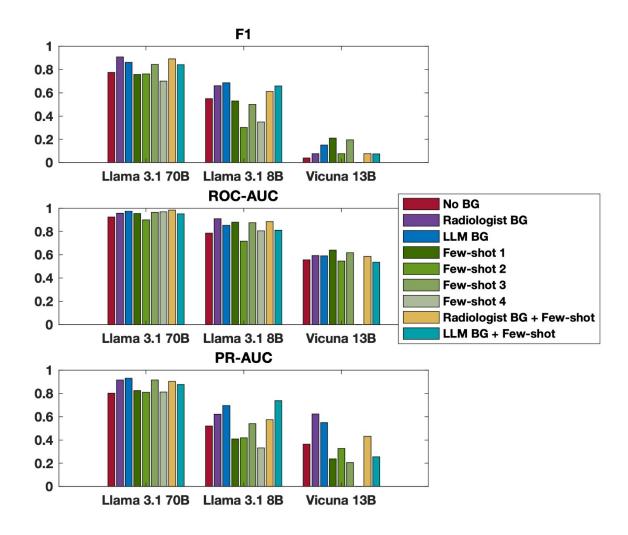
Methods

We tested performance on a time-based sample of CT exams covering the spine from 2/20/2024 to 2/22/2024 acquired across our healthcare enterprise (637 anonymized reports, age 18-102, 47% Female). Ground truth annotations were manually generated by a group of attending/fellow/resident physicians, and medical students. These annotations were compared against the performance of three models (Llama 3.1 70B, Llama 3.1 8B, and Vicuna 13B) with nine different prompting configurations for a total of 27 model/prompt experiments (Figure-1).

Results


Among the 637 reports, 49 were classified as true by annotators (prevalence: 7.69%). The highest F1 score (0.91) was achieved by the 70B Llama 3.1 model when provided with a radiologist-written background, with similar results when the background was written by a separate LLM (0.86). The addition of few-shot examples had variable impact on these prompts (0.89, 0.84 respectively). Comparable ROC-AUC and PR-AUC performance was observed (Figure-2).

Conclusion


3025 | From Prompt to Practice: Advancing Radiology with Large Language Models Scientific Research Abstracts

An open-source LLM excelled at extracting diagnostic information from free-text radiology reports using prompt-based techniques without model training.

Figure(s)

Figure 1. Experimental workflow illustrating the evaluation of the performance of three models (Llama 3.1 70B, Llama 3.1 8B, and Vicuna 13B) across nine prompting configurations, totaling 27 model/prompt experiments.

Figure 2. Performance comparison of model/prompt experiments using F1 score, ROC-AUC, and PR-AUC metrics. Vicuna 13B was not tested against Few-shot 4 due to context restrictions.

Keywords

Artificial Intelligence/Machine Learning; Emerging Technologies; Imaging Research; Quality Improvement & Quality Assurance